## Objectives

 The student will be able to:
# 1. simplify square and cube roots <br> 2. simplify radical expressions. 

## SOL: A. 3

Designed by Skip Tyler

## Vocabulary

 index radical sign$\sqrt{64}$ is the square root of $64 \cdot \sqrt[3]{64}$ is the cube root of 64 .
In the expression $\sqrt{64}, \sqrt{ }$ is the radical sign, 64 is the radicand and 2 (not shown) is the index.

In the expression $\sqrt[3]{64}, 3$ is the index.

If $x^{2}=y$ then $x$ is a square root of $y$. If $x^{3}=y$ then $x$ is a cube root of $y$.

1. Find $\sqrt{64}$
2. Find $-\sqrt{0.04}$
-0.2
3. Find $\sqrt[3]{64}$

$$
4
$$

4. Find $\sqrt[3]{-8}$

$$
-2
$$

3. Find the square root: $\pm \sqrt{121}$ 11, -11
4. Find the cube root: $\sqrt[3]{27}$

3
5. Find the square root: $-\sqrt{\frac{25}{81}}$
$-\frac{5}{9}$

What numbers are perfect squares?

$$
\begin{gathered}
1 \cdot 1=\mathbf{1} \\
2 \cdot 2=4 \\
3 \cdot 3=9 \\
4 \cdot 4=\mathbf{1 6} \\
5 \cdot 5=\mathbf{2 5} \\
6 \cdot 6=36 \\
\mathbf{4 9 , 6 4 , 8 1}, \mathbf{1 0 0}, \mathbf{1 2 1}, \mathbf{1 4 4}, \ldots .
\end{gathered}
$$

## What numbers are perfect cubes?

$$
\begin{aligned}
& 1^{3}=1 \cdot 1 \cdot 1=\mathbf{1} \\
& 2^{3}=2 \cdot 2 \cdot 2=\mathbf{8} \\
& 3^{3}=3 \cdot 3 \cdot 3=\mathbf{2 7} \\
& 4^{3}=4 \cdot 4 \cdot 4=\mathbf{6 4} \\
& 5^{3}=5 \cdot 5 \cdot 5=\mathbf{1 2 5}
\end{aligned}
$$

and so on and on and on.....

# 6. Use a calculator to find each square root. Round the decimal answer to the nearest hundredth. $\pm \sqrt{46.5}$ 

6.82, -6.82

## 1. Simplify $\sqrt{147}$

Find a perfect square that goes into 147 .

$$
\begin{gathered}
\sqrt{147}=\sqrt{49 \sqrt{3}} \\
\sqrt{147}=\sqrt{49} \sqrt{3} \\
\sqrt{147}=7 \sqrt{3}
\end{gathered}
$$

Verify your solution with a calculator.

## 2. Simplify $\sqrt{605}$

Find a perfect square that goes into 605 .

$$
\begin{gathered}
\sqrt{1215} \\
\sqrt{121} \sqrt{5} \\
11 \sqrt{5}
\end{gathered}
$$

Verify your solution with a calculator.

Simplify $\sqrt{72}$

$$
\begin{array}{ll}
\text { 1. } & 2 \sqrt{18} \\
\text { 2. } & 3 \sqrt{8} \\
\text { 3. } & 6 \sqrt{2} \\
\text { 4. } & 36 \sqrt{2}
\end{array}
$$

## 3. Simplify $\sqrt[3]{54}$

## Find a perfect cube that goes into 54 .

$$
\begin{gathered}
\sqrt[3]{54}=\sqrt[3]{27 \cdot 2} \\
\sqrt[3]{54}=\sqrt[3]{27} \cdot \sqrt[3]{2} \\
3 \sqrt[3]{2}
\end{gathered}
$$

Verify your solution with a calculator.

## 4. Simplify $\sqrt[3]{640}$

Find a perfect cube that goes into 54 .

$$
\begin{aligned}
& \sqrt[3]{640}=\sqrt[3]{64 \cdot 10} \\
& \sqrt[3]{640}=\sqrt[3]{64} \sqrt[3]{10} \\
& 8 \sqrt[3]{10}
\end{aligned}
$$

Verify your solution with a calculator.

## Simplify $\sqrt[3]{625}$

$$
\begin{aligned}
& \text { 1. } 25 \\
& \text { 2. } 5 \sqrt[3]{5} \\
& \text { 3. } 5 \sqrt[3]{25} \\
& \text { 4. } 25 \sqrt[3]{5}
\end{aligned}
$$

