Objectives The student will be able to:

- 1. simplify square and cube roots
- 2. simplify radical expressions.

SOL: A.3

Vocabulary

 $\sqrt{64}$ is the square root of 64. $\sqrt[3]{64}$ is the cube root of 64.

In the expression $\sqrt{64}$, $\sqrt{}$ is the <u>radical sign</u>, 64 is the <u>radicand</u> and 2 (not shown) is the <u>index</u>.

In the expression $\sqrt[3]{64}$, 3 is the <u>index</u>.

If $x^2 = y$ then x is a square root of y. If $x^3 = y$ then x is a cube root of y.

1. Find $\sqrt{64}$

8

2. Find $-\sqrt{0.04}$

-0.2

3. Find $\sqrt[3]{64}$

4

4. Find $\sqrt[3]{-8}$

3. Find the square root: $\pm \sqrt{121}$

4. Find the cube root: $\sqrt[3]{27}$

3

5. Find the square root: $-\sqrt{\frac{25}{81}}$

$$-\frac{5}{9}$$

What numbers are perfect squares?

$$1 \cdot 1 = 1$$
 $2 \cdot 2 = 4$
 $3 \cdot 3 = 9$
 $4 \cdot 4 = 16$
 $5 \cdot 5 = 25$
 $6 \cdot 6 = 36$

49, 64, 81, 100, 121, 144, ...

What numbers are perfect cubes?

$$1^{3} = 1 \cdot 1 \cdot 1 = 1$$
 $2^{3} = 2 \cdot 2 \cdot 2 = 8$
 $3^{3} = 3 \cdot 3 \cdot 3 = 27$
 $4^{3} = 4 \cdot 4 \cdot 4 = 64$
 $5^{3} = 5 \cdot 5 \cdot 5 = 125$
and so on and on and on....

6. Use a calculator to find each square root. Round the decimal answer to the nearest hundredth.

6.82, -6.82

 $+.\sqrt{46.5}$

1. Simplify $\sqrt{147}$

Find a perfect square that goes into 147.

$$\sqrt{147} = \sqrt{49}$$

$$\sqrt{147} = \sqrt{49}$$

$$\sqrt{147} = 7\sqrt{3}$$

2. Simplify $\sqrt{605}$

Find a perfect square that goes into 605.

$$\sqrt{121} \boxed{5}$$

$$\sqrt{121} \boxed{5}$$

$$11\sqrt{5}$$

Simplify $\sqrt{72}$

1.
$$2\sqrt{18}$$

2.
$$3\sqrt{8}$$

$$\checkmark 3. \ 6\sqrt{2}$$

4.
$$36\sqrt{2}$$

3. Simplify $\sqrt[3]{54}$

Find a perfect cube that goes into 54.

$$\sqrt[3]{54} = \sqrt[3]{27 \cdot 2}$$
 $\sqrt[3]{54} = \sqrt[3]{27} \cdot \sqrt[3]{2}$
 $3\sqrt[3]{2}$

4. Simplify $\sqrt[3]{640}$

Find a perfect cube that goes into 54.

$$\sqrt[3]{640} = \sqrt[3]{64 \cdot 10}$$
 $\sqrt[3]{640} = \sqrt[3]{64} \sqrt[3]{10}$
 $\sqrt[8]{10}$

Simplify $\sqrt[3]{625}$

- 1. 25
- \checkmark 2. $5\sqrt[3]{5}$
 - 3. $5\sqrt[3]{25}$
 - 4. $25\sqrt[3]{5}$