3-8 Solving Literal Equations

Solve literal equations THE SAME way you solve regular equations. Use REVERSE Order of Operations.

Examples:
a) Solve $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ for ' b ' (Get \mathbf{b} by itself)

To get ' b ' by itself, we need to move ' $m x$ ' to the other side of the equation. To do that, perform the inverse operation, which in this case is subtraction.

$$
\begin{gathered}
y=-n x+b \\
-m x-n x \\
y-m x=b
\end{gathered}
$$

Our answer is:

$$
\mathbf{b}=\mathbf{y}-\mathbf{m x}
$$

b) Solve $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ for ' \mathbf{x} ' (Get \mathbf{x} by itself)

To get ' x ' by itself, we need to move ' b ' and ' m ' to the other side of the equation. Since we're using REVERSE Order of Operations, we'll deal with the 'b' first.
Perform the inverse operation and subtract it from both sides

$$
\begin{gathered}
y=m x+b \\
-b \\
y-b=m x
\end{gathered}
$$

Next, we need to move the ' m.' Since it is being multiplied with the x, perform the inverse operation and DIVIDE both sides by 'm.'

$$
\frac{y-b}{m}=\frac{1 \mathrm{nx}}{\mathrm{~m}}
$$

Our answer is:

$$
\frac{y-b}{m}=x
$$

c) Solve $\mathbf{e}=\mathbf{m} \mathbf{c}^{\mathbf{2}}$ for ' c ' (Get \mathbf{c} by itself)

To get ' c^{2} ' by itself, perform the inverse operation and DIVIDE both sides by ' m .'

$$
\begin{aligned}
& \frac{\mathrm{e}}{\mathrm{~m}}=\frac{m c^{2}}{\mathrm{n}} \\
& \frac{\mathrm{e}}{\mathrm{~m}}=\mathrm{c}^{2}
\end{aligned}
$$

Next, we need to remove the ${ }^{2}$ from ' c^{2}.' The opposite of squaring something is to take the square root of it.

$$
\sqrt{\frac{\mathrm{e}}{\mathrm{~m}}}=\sqrt{\mathrm{c}^{2}}
$$

Our answer is:

$$
\sqrt{\frac{\mathrm{e}}{\mathrm{~m}}}=c
$$

d) Solve $\mathbf{a}=3 / 4(\mathbf{b}-\mathbf{5})$ for ' b ' (Get \mathbf{b} by itself)

To get ' b ' by itself, we need to move ${ }^{63 / 4}$ ' to the other side of the equation. To do that, multiply by the reciprocal.

$$
\begin{aligned}
& 4 / 3 \circ a=4 / \cos / 4(b-5) \\
& 4 / 3 \circ a=b-5
\end{aligned}
$$

Next, get rid of the ' 5 ' by adding it to both sides.

$$
\begin{gathered}
4 / 3 \circ \mathrm{a} \\
+5
\end{gathered}=\mathrm{b}-\mathrm{\beta}
$$

Our answer is:
$b=4 / 3 a+5$

