Johannes Kepler's Model of the Solar System (*Mysterium Cosmographicum*, 1596)

Regular Polyhedral Structures in the Real World

Math Models as Graphical Representations

Math Models as Symbolic/Tabular Representations

 $\int_{a}^{b} f(x) dx = F(b) - F(a).$

Tabl	e 2. C(OF a	nd	values	for	the	mixture	design	experiments	for	the	mo-
bile j	ohase	of th	e E	IPLC o	arb	ohy	drate an	alysis				

Experiments	Mobile Phases ^a	ΠRs values	COF values Rd = 1.2
1	50:10:40	1.230	0.016
2	70:10:20	1.066	-0.085
3	60:14:26	0.788	-0.422
4	60:10:30	1.206	0.005
5	55:12:33	1.071	-0.114
6	65:12:23	0.965	-0.218
7	60:11.3:28.7	1.044	-0.140
8	55:10.4:34.6	1.156	-0.037
9	65:11.7:23.3	1.037	-0.245
10	50:10:40	1.212	0.009
11	70:10:20	1.106	-0.082
12	60:14:26	0.787	-0.426
13	60:10:30	1.205	0.0042
14	55:12:33	1.073	-0.112
15	65:12:23	0.971	-0.212
16	60:11.3:28.7	1.045	-0.138
17	60:11.3:28.7	1.061	-0.123
18	60:11.3:28.7	1.058	-0.126
19	60:11.3:28.7	1.061	-0.123
20	60:11.3:28.7	1.045	-0.138

a acetonitrile, water and ethyl acetate, respectively.

Math Models of Nature and Architectures

Catenaries and the *hyperbolic cosine* function

$$y = a \cosh\left(\frac{x}{a}\right) = \frac{a}{2} \left(e^{x/a} + e^{-x/a}\right)$$

The Top Ten Laws of Our World (Robert Crease: A Brief Guide to the Great Equations, 2009)

- 1. The Pythagorean Theorem $a^2 + b^2 = c^2$
- 2. Newton's 2^{nd} Law of Motion F = ma
- 3. Newton's Law of Universal Gravitation $F = G \frac{mM}{r^2}$
- 4. Euler's Formula $e^{ix} = cosx + isinx$
- 5. The 2nd Law of Thermodynamics $\Delta S = \int \frac{\delta q}{T}$.

The Top Ten Laws of Our World (Robert Crease: A Brief Guide to the Great Equations, 2009)

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} - \vec{M}$$
$$\nabla \times \vec{H} = -\frac{\partial \vec{D}}{\partial t} + \vec{J}$$
$$\nabla \cdot \vec{D} = \rho$$
$$\nabla \cdot \vec{B} = 0$$

- 6. Maxwell's Equations
- 7. Einstein's Mass-Energy Equivalence $E = mc^2$
- 8. Einstein's Field Equations $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi \frac{G}{c^4}T_{\mu\nu}$
- 9. Schrödinger's Equation $i\hbar \frac{\partial}{\partial t}\Psi(x, t) = \hat{H}\Psi(x, t)$
- 10. The Heisenberg Uncertainty Principle $\Delta \chi \Delta \rho \geq \frac{\hbar}{2}$

Structures of Basic Types of Models in School Arithmetic and Algebra

- Additive : A + B = C, C B = A, C A = B; $A \pm x = C$
- Multiplicative: AB = C, C/B = A, C/A = B; Ax = C
- Proportional: A/B = C/D, B/A = D/C, A/C = B/D, C/A = D/B
- Percent and percent change:

A ÷ B = c%, A ÷ c% = B, B*c% = A; C = P ± P*r% = P(1 ± r%) Structures of Basic Types of Models in School Arithmetic and Algebra

- Recursive: $a_n a_{n-1} = c; a_n / a_{n-1} = c$
- Linear: Ax + B = C; y = mx + b; Ax + By + C = 0
- Nonlinear (quadratic, power, radical, polynomial, rational, exponential, logarithmic, trigonometric, etc.)
- Absolute value and piecewise models
- Combinations of the above
- Inequality versions of the above